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ABSTRACT

A complete logistical plann ing model of a firm or public sy st e l i l  should in clud e
acti vities ha vi ng to do with t he procur ement of suppl ies . N inf r equent l y , however ,
procurement aspects are difficu lt to model because of th ei r  rel ativ ely complex and
, ‘\ W (~~Ct 1I t nature . This rai ses the issue of how to build a,, iivermll logistics model in
sP ite of such difficultie s . This pallor offers some suggesti ons toward th i s  end which
enab le the procurement side of a model t o  be simplified via comniodit y aggregati on
in a ‘ c( ’rit rolled’’ way , that is, in such a manner that  the niodeler can know and
control in advance of solving his model how much to— s of uce ,ita~’y will  be incurred
for the so l i i t  1’ ii~ to the (aggregated ) overall model.

I. INTRO DUC TIO N

In this papt’r the term ‘‘pro( urern ent ” i~ used in a broad sense t h a t  includ es m aterials nianage—

inent of raw m aterials and ptt r t s  for a man ufacturing firiti , the acqu isit ioll of goods for ~ubse q ime nt

distribution by a wholesale firm , the procurement of supp lies and materi a ls by a service organization

svsteu, . awl similar situations. The essential point is tha t  we ore addressi n g the  “~n i i t  ial ’’ r ather t haim

t h e  ‘ huit t i’ ’  stage of a logistics system. See , for ifl~ t aU ce , the recent book by I) . Uower~ox (2( which
makes the distinction ia term s of material management (supplie r—oriente d) 011(1 ph y sical distribu-

tion nia na gemnen t (customer -orient ed).
Whereas it is the large number of customer s and their ordering i(hosylo r asm( s t h a t  tend t~

make the fina l s tage of a logistics sv~tein hard to model , it is the large imimntbe r  of supp l iers atfl(l

items and sometimes the con stantl y changm g patterns of proc urent dnt that  frequentl y m ake the

~~~ initial stage dithc~ lt to model. Aggregation of customers on a geogra phic bnsis into ( ustoIIw r

zones and aggregation of delivered pro thii t s (or services) into product groups are cOinIfflHll y it ed

(~~~ to sim p lify the fi n al st nigi of a logisti es planning model. Similar aggregations ra n be u s d 1 to liii -

plify the initial stage , bti t ‘ati sfactory sirnplif ir ati ons may be more difficult  to nuh ieve  because

of the influence of differential suppiy (V Os t S amolig supplier s and the greater degree of ninm , 1 i i i mo ’—
as to which supp l iers pr ovi( le what .  These in finenc es ~ ‘cni to ro l l for a re lat ivel y greater am oun t

*‘rhl.q research was part ially supported by the Nat ional ~r3eaee Foundati on and t h e  f l u , ,  of \~ v,il Il. s,areh
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202 A. M. GEOFFRION

of detail to be pres(~rv ed in the procurement stage of a planning m odel, Unfor tunatel y, this could
require the preparation of undu ly detailed procurement forecasts—which supp liers will be able
to sUI)p ly what items at what  prices in what annual quantities. The difficulties of assembling this
data could be out of proportion to the relative importance of procurement as a component of the
total logistics planning model. Even worse , it m a  not be sensible to impose strict model control
iq the traditional linear programming sense over procurement activities at so great a level of detail.

A reasonable response to these possible difficulties is to take a more flexible attitude toward
the modeling of procu rement than is customary among devotees to mathematical programming.
Namely, look upon the procurement pattern as an aspect of the problem that is partly given
objec tively and 1)art ly under the analy st ’s control as though it were a policy parameter. View the
procurement pattern as something whose influence is as much to be understood as it is to be
“optimized.”

The aim of this paper is to provide a rigorous framework within which this flexible modeling
attitude can be exercised. We are particu larl y interested in a priori error bounds concerning the
accuracy of the full logistics planning model as it is influenced by aggregating procurement items.
So far as we are aware , our results along these lines are without precedent.

A compan ion paper [5~ develops similar results in the context of customer aggregation.

II. MODELING STRATEGIES

As a point , of (leparture , consider the following logistics planning model.

Pl anning Model P

(1) minimize ~~ Cljk.t ,~k+F(Y, z)
z .v.  tj~

(2) subject to Sf, � E x~~ ~ Sf,, all i i

(3) 
~~ ~~~~~~~~~ ~~~~ all i k

— (4) ~ y~,=1 all 1

(5) .r ,5 �O , a l l ij k

(6) Ykm �O, all Id and (y, z)  €~~~.

The following interpretations will he used :
z=indexes procurement items (raw materials , parts , fi nished goods , etc.).

j =indexes geographical procureme nt zones.
k=indexes the facilities being supp lied.
l=indexes customers.

xi,t =a variable giving t h e  annua l  amount  of item i procured from zone j  for facility fr
~ e ,= a variable giving the fraction of the annun! needs of customer I (for goods or services)

satisfied b~ faci h i i v k.
z=a vector of addit iona l  (po’.sibiv logis tical) variables.

c~, *=nnit cost of proc lir enhen t plus transportation associated with the flow ~~~

~ 
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F (y, z)=tho total annual costs associated with (y, 2) exclusive of procure m ent and inbound
transportation (typicall y, facility—related costs plus outbound transportation
costs) .

~~ (Sf,)=a lower (upper) limit on the annual amount of item i pro cur ed from zone j  (part)) ’

given and partly at the analyst’s discretion).
Dtm = the amount of item i req u ired to satisf y the total annual nee(ls of (‘llstonwr / .

~l=a constraint set that must be satisfied by (v, z).
It is understood that a list L~ of allowable triples (i, j ,  k) is given to refl ect which procurement

zones can provide which items to which facilities, and that all summations and constraint ch u rners-
tions run only over allowable combinations. For instance , the enumeration in (2) over “ij” runs
over the pairs (~, ~ such that (~, 3, k) ~~~ for some k. Similarly, a list L, is given which specifies
which facilities can serve which customers.

Constraints (2) control the procurement pattern. An historical procurHnent pattern (or some
other preconceived pattern) can be enforced by taking corresponding fSfJ and ~ ,,‘s to be the same
or nearly the same. The latitude for departure fro m the preconeeive(l pattern increases as Sg, — So
increases. A necessary condition for feasibility is

(7) E SfJ�~~ D0<E ~~ , for all i.

The objectiv~ function (1) gives the tota l cost associated with logistical aetiviti u ”A . We hav e
already discussed (2) . Constraints (3) specif) that each facility must receive exactly enoug h of
each item to satisfy the needs of the customers it serves. This requires that the goods or services
demanded by each customer can be converted into ~orrespond ing requirements for the constituent
items (it is immaterial whether the facilities do manufacturing or distribution or st ’rvi . or some
combination thereof~. ~ onstraint.s (4) specify that the full needs of each customer must be satisfied .
Constraints (5) and (6) impose whatever other requirements on the variables may be needed for
system feasibility.

Observe that for fixed y and 2, the optimization over x separates into independent ~e t problemns
for each i—each a slight generalization of the classical minimum cost transportation problem.

Because of the complete generality of F and i~, the model could be set up to determine the lea.st
cost facility locations satisfying a desired level ef customer service. Normally this would require

that F be discon tinuous in order to accommodate fixed costs, or some binary s-variables could he

introduced to achieve the same effect. The model could also be set up to provide for multip le corn-
modities flowing to customers from the facilities, unique assignment of customers to faciliti es for
certain commodities, and many other problem features . We prefer to leave the model in its general
form (l)—(6) because these and many other special cases are thereby treated simultaneousl y with
minimum notational complexity.

The model as stated is actually just a point of departure for the models we actuall y wish to

study. Its chief shortcoming is that it may involve too great a level of detail regarding procurement
from the viewpoint of policy and also sheer size. (~onsider first the policy aspect. Model P place~
limits on the procurement pattern (via (2)) on an item-by-item basis. Except for items of major
importance, this seems like an excessive degree of control and may not even be meaningful in

situations where suppliers are changed frequently on the basis of current price and av ailability . It

-~~~~~~~~~~~~~~~~~ 
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204 A. M. OEOFFRION

would make more sense when there are many items of small importance to aggregate some of the
constraints in (2). Suppose this is done for some subset I of items. The result is

Planning Model P,
t he same as planning model P. except t hat (2) is replaced by

(2.1) S~ �~~ Z ,jk �~~~o, all i j  with i~I

(2.2) ~~~~~~~ £ iIk �~~~, 1 ,  all j,

where

(8) S,. and

Thi s version seems more reasonable from a policy stand point in tha t  the procurement patt ern for
items I is now sti pulated on an aggregate basis. The numbers S, ,  and .S~,, would be interprete d
rather freely since their formal constituents Sf j and 

~~~ , 
might be poorl y known or l~~rhU P’ even

ill-defined.
There is , of course , a natural generalization of P1 that aggregates the pr o( ’urenwnt l)att(’Vtl

constraints for sere ral subsets of items. The anal ysis of this generalization i~ a simp le ex tension ff1
the results to be obtained for P, (see the Remark in Appendix 1).

Model P1 is better from a policy standpoint but it ~till may be too large. The t iumber of vari-
ables is unchanged , although the number of type (2) constraints has diminished, Moreover , a
possible new di~~cuIty arises in that the mathematical structure of P1 is more comp lex than t h a t
of P. This is due to the fact that aggregating the type (2) constraints over id has the effect of
coupling together what previously was a collection of independent transportation-like subproblems
in the x-variables when y and z are fixed. The new coup ling tends to diminish the computational
effectiveness of solution methods that exploit the natural separation into subproblems when y and
z are held fixed temporaril y (e.g., methods based on Benders decomposi tion [4)). The nice structure
of P could be restored , and the size of P1 much reduced , by completing the aggregation with respect
to items 1 begun in the passage from P to P 1. This involves replacement of the variables z~~ with
id by aggregate variables ~~~, say, so that the following single transportation-like sub problern
replaces the coup led subproblems of P, for fixed y:

Minimize E b,~E,k
E~~ O ik

subject to

(2.2A) ~~~~~~~~~~~~~~~ all j

(3.1) ~~ Ef t~~~~Df 1 Ykt ,  all Ic ,

where the bj k ’s are plausible surrogates for the c0ft ’s over id. Variable ~~ 
is interpreted as a surro-

gate for X ,,k, and (3.1) is interpreted as requiring facil ity Ic to receive enough of the items in

I to meet its needs in the aggregate.
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This further aggregation of F, leads to

Planning Model Vi.

Minimize ~~ eokx ,,k+E,kb) k~J k + F (y, z ) + L(y;  b)
‘ ,. x . f , , z , E  ~

subject to

( 2.1) 
~S~1�E r f 1k�S f J ,  all ij with id

(2.2A) S,.,�~~ E,k �Sf.J. all j
(3.1) D,, ,y~, all k

(3. 2 EX ,,k r=~~~ D Oy k, , all i/c with id

(4) E yk 1 1, all /

(5.1) x 0~�0, all ijk with id
(5.2) E~~�0, all jk such that  ijk exists for id
(6) ~fj �0, all ki and (y, z) dl,

where we define

(10)

and where L(y;  6) is some linear function of y designed to “compensate” for aggregation error
in spite of the arbitrary choice of b.

N ot ice th at the mathematical structure of P,. b is identical to that of P (with the addition to
the objective function of a new term linear in y, which seems innocuous enough). P,.b is smaller in
that the items of I have been aggregated together throughout.

The major task at th is  point is to understand the relationship between P, and P,.b . Our main
results in this direction are summarized in the next section.

III. THE RELATION SHIP BETWEEN PLANNING MODELS P, AND ~~~
As it turn s out , a natural choice for the L function exists for which a nearly ideal relationship

can be established between F, and 1’i. b . In particular , an a priori bound can be obtained on the
difference between their optimal values. Such a bound can be obtained for any choice of b, and in
fact furnishe s a useful criterion for making this choice.

It will be convenient to refer to the so-called Range function , which is defined for any col-
lection {a~ a ,,} of scalars as

R ange {aj } ~x Max {a , }—Min {a,}.
I�i�n 1~~i<n

The notat ion r(.) will refer to the optimal valu e of an optimization problem.

‘T~~T~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~
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MAI N Th EOREM Assume that the sanu’  i/c li nks ~xj ’.t  for ~vei’v i t e i i i  i i i  ‘.oni~’ ~l iI ~~~i I .
Let b,~ be choseiu arbitr ari ly for these links , and take the conu p~’ui ~at i ouu  fun c t i on  L to Ia ’

(11) L (y ; b) =
~~~~ 

(
~ 

D,, Mm {c ,1~—b ,~} )?It:.

Then

(12) r (I ’, ,~) <~‘(P ,) < i’(J~, ~) ~ ~,

where

(13) ~~ Max{~~ 1) ,, Range {e f)k — b j k } } .

Moreover , a complete t b— optim a l solution of F, can be obtained from any optimal ‘.oluution (~ , 7?~ ~,
to P,. b by using (~, ~, ~) as i and supp lementing it I~ values for t iue  missing ~~ for 1 according
to the disaggregation formula:  for all ij k with I € 1, put

— --— E.jA, if E ,b :: ))
(14) x ,~ =

0 if ~~=0

The proof is given in Appendix 1, along with a generalization to the ea~t’ where several subset’.
of itenm are aggregated sinuu ltan eous lv.  Extensions which accommodate suhoptima l ‘ .ol i i t i  OIl S to
P, are easy to obtain,

This theorem is a satisf ying one in a number of respects. First , it allows for an arbitrary aggre-
gation set 1 sub~e~t to the requirement that  the items involved have a common ‘.e) of transporta-
tion links (otherwise feasibility difficulties could be encountered in try ing to recover a feasible
solution to P, from one of P, b ). Second, it allows an arbitrary choice of b , which accommodate s
any heuristic rule tha t  may be appealing in a particular situation (e.g., some weighted mean of
C u t  over I ~ 1). Third , it selects L in such a manner that the aggregated problem i~ a rela za tion of
the original one in a suitable seui-~e , thereby producing an underestimate of the optimal value of the
original problem. Fourth , this u nderestimate has an error- that is known a priori to he no larger
than a calculable number t t. Fifth , solving t h e  aggregated problem is guaranteed to furnish a coin-
plete tn-opt imal solution to P, (one can very likely conclude that this solution i’. t-optimal in P,
for some t smaller than tn—just take the differenc e between the objective fun ct ion  ( I )  eva lua ted
at t he feasible solution and the lower bound r ’(P,~ ) ) .  And sixth , the exp lici t formula for t h  hu~ a
number of valuable applications. We now exp an d on this last, point.

An important question is how one should select b when a compelling heuristic rlio~~’e i~ not
available. The formula for ~ furnishes a natural criterion : select b to make t~ as small  i’~ possibh’.
llappily, this can he eonverte(l to a linear programming problem by using standard tricks (mainl y
the representati on of the maximum of it set of numbers as their least upper hound).  Thus , I/ , i  op t mo/
b can always be calc ulated by linear programming .



r ~~~~~~~~- - ~~~~ 
:‘ :~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 

—--- .- -—- --
~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

E R ROR BOUND S FOR PH OCUIt F :MEN T COMODITY .\(,~ ItEC AT ION 207

TI ue t~III in im izing ch oice of 6 caui ‘ .o r u tu ’  t ii to ’s be oh t a ins ’s at  a ty ( i r f t  fl y if at Edit  ions I ns~t lW p( ions

ti re imposed. For instance , if th e I) , ,‘s are ropur ( ioiiallv t h . - ..a ito ’ for iii 1 at ever~’ s ui ~ t onu. ’r- -

i c .. if there i ’\i ’.t  h lr ol sor t i ons

p, , where J)~ �0 for i t t  and ~~ p,

511( 1 tha t

( I 5 )  p, for all ii with it !

—anti P lo > Pu for so lut e 1€! , he ru it can 1w shown t h a t  (h i ’ opt im al  chui~ s’ of b i~ to I ake hi ;.
us,,

for all f/c .
It is of interest to characterize t hut ’  s i tuation s where t~= ( t  i~ possible. It i~. ~.Iuo w uu in A 1, 1ueri d ix 2

that a necessary and sufficient condition for ~ to equal 0 foi’ some ( bois e of b i-~ (l i st  ( luc re exi’— t
numbers $,~ and ‘y,~ su ch that

(1 6) Cg,k $JL-+7ik for all ijk with id and Ic siu-Ii  that  it
is connected to som e I with  P ,, 0.

If this condition holds , then €~=O is achieved by taking b~ =~~ for all jk (p lt t ~ any con’.tant de-
pending only on Ic) with Ic such that  it is connected to some I for which

~~ D 1~>0.

The choice of b j k is arbitrary for any k’s left over.
When might (16) hold? An important ( ast’ occurs when item i lots ti procur ement -o~ t ~,

$/uni t, and all items in I have t h e  sante unit inbound transportation rate when measured ui a per
mile basis , say t, S/unit-mile. If the distance from j  to k is ~~~ then

(17) c 1,~~~t ,d1~+y 5  for all i f/ c  with iii

and (16) clearl y holds. Th is case admits an easy generalization ( lu s t  ~‘tilI u s c  t~=O: 1, can di’—
pend on j  or k or both , and y, can depend on k.

IV. CONCLL S1O~
We h ave achieved our goal of providing rigorous guidance to the modeler who wishes to con—

sider aggregating a sul)set I of items in the procurement portion of a logistics planning model.
Assuming t h a t  the aggregate constraints  (2.2) offer adequate  control of (Is ’ procurement J )ui t te ruI .
the modeler can obtain an a pr iori  l)ound from 13) ott the amount of suh opt im al i ty  t hi t i t wi ll  be
s ’ ai i— u ’ d in the  model by sub sequentl y collapsiuu g the inbound flows for I iii I down to a sing le
tr ansport at ion—like problem that  uses utiiv plausible rO ’.I s b ,~ for the aggregated i tems , I t  beau’s
emphasis t h a t  this bound can be ca l( ’u late ul b~fo r ’ optimizing the  aggregated ~)i uuIuf l i u1g  nos , he1 ,

p eu’hua p~ uu ~.iiug rough preliminary da tut , and la nce can be a ui s e fuil tool for m odel ‘ li ” i u.rmu -

I
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208 A. M. GEOFFR!O N

The results attained can be ti s . 1 :.ot onl y to s tud y the effects of aggregation with ,  a pred eter-
mined subset I of items , but  also to elect I it se lf  on the basis of small ant ic i pal .t’ul aggregation

error. This can be (lone by cluster anal y~.is aimed at finding item subset s for whi ch ( I (;) hold ’. uu p —

pro~~mately. One way to proceed is bused on the following observation . N  ul ice that if ( 16) holds

exactly, then summing over j  yields

Ecut E $,t +Hj Hu~’st for ~~,

where Ij~ ~ is the number of procu rement zones supplying it Pill I - ‘rhuus , -y,~ Cs ii be elimitk ut t ( ’( l ill

(16) using
~~ C ,~

~~~~~:ic it~
to obtain

Ec ot ~~~ 
for all u / c  wi th i t l  and Ic

(16)’ c — — J_-~ ._ such that it is connected
°~ fli U t ‘~ to sonic 1 with D,5>0.

Conversely, (16) ’ implies that (16) holds. h ence (16) and (16)’ are equivalent conditions . Ths

obvious clustering approach would be to identif y with each item I a linearized Ve ( ’tOr V’ with

typical entry
~~ c u _Sb

cl _ Sb — if link ijic exists

a large number At otherwise.

The V’-vectors would then be clustered by some standard technique [1~ to discover ‘.ii bs~ t s of

i for which the V”s are nearly identical . These subsets of -i would identif y i tems which , if aggregated ,

would tend to have small aggregation error when an approrp iate choice for b is used. In fa ct . tin

appropriate choice for 6 would be a virtual by-product of most standard clustering schemes

A refinement would be to weight the V”s on ts components according to demand ou’ some measure

of the likelihood that a given link would actually be selected by the model for use.
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APPENDIX 1~ PROOF OF THE MA IN THEOREM

Let v(.) denote the infimal value of any minimizing optimization problem.
Lemma 1 [6]. Consider the two optimization problems

(Q) Minimizef(w) subject to weW

(Q) Minimize w) subject to w~W,

where f  and fare real-valued functions bounded below on a non-empty set W. (Interpret (Q) as

the “true” problem and (~) as the “approximating” problem in the sense that an approximate

objective function 7 replaces ,f .) Let and be scalars (not necessarily nonnegative) satisf y ing

(A l) —~ <J (w)—f(w) � for all w~W.

Then

(A2) —!�v(~ )—v ( Q) �~

and any optimal solu tion ~ of (~) is necessarily (~+7) -optimal in (Q).

Lemma 1 will be applied not to P, in the role- of (Q) , but rather to an equivalent version of
P,, namely its “project ion ” [31 onto the variables y, z , and .r with i l l :

Minimize F (y ,  z) +~~ C,,t.r u ,t +~ ,( y)
ii
ii ’

ct to (2.1), (3.2) , (4), (5.fl , (6)

where we define

A3) , u I l l U I f l  ~~~~~ subject to (2.2) and

all i/ c with i ~ 1

x1~~ 0, all j f k  with iil.

Make the identifications

iv= the variables of (Ps) *

W=the constraint-s of (p,)*

f(w) =the objective function of (P 1)*

7(w)=tlue objective function of (P,) with ~ replaced by ~,,

where ~~(y) is defined as

(A4) ~,(y) 4L (y;  6)+lnf . E ~~~ subject to (2.2A) and (3.1)
— (~~O jk

with L as defined in (11) for arbitrary fixed b. The justification for (A4) is provided by

.-.

~ 

. -. . . - 
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210 A. M. GEO FFRION

LEMMA 2: Assume that the same jk hink.s exist for every item in the subset I. Then

(A5)
,(y) �~‘,(y) � ,(y) +~~, all (y, z) satisfying (4) and (6) , where ~ is defined as in (13).

Once Lemma 2 is established , conclusion (12) of the Main Theorem is at hand upon applying

Lemma 1 using the identificatio ns given above and the obvious facts v(Q) =v(P,) * v(P,) and

v(Q)=v(P,.b).
PROOF OF LEMMA 2: Introduce a supplementary nonnegative variable ~~ into (A3) for each

jk link in existence for itt , along with the supplementary coftstraints

and the supplementary terms 6,~ ~~~~~~~~ in the objective function. From (2.2) we see that addi-

tional redundant constraints (2.2A) may be added , and from the demand constraints of (A3) we

see that (3.1) may be added. Clearl y none of this alters the infimal value of (A3) - Upon “projec-

tion ” of the augmented problem onto the E-variables, one obtains

(A3) q,,(~) ’.rr 1nfimUm Ek ~+R(E, y) subject to (2.2A) , (3.1)
t~ O jk

where th e remainder term is defined as

R(f, ti) 4 In fimum E (cI ,,~—b~k) z bj k
u k
I,!

subject to
~~ x,,~=~~~Duuy~:, all ik with itt

all jk

~~~~~ all ijk with itt.
It is easy to verify that -S.

~ (y) �R(E, y) �ii(y) for all (y, a) satisfying (4) and (6)
and ~ satisfy ing (2.2A) and (3.1),

where
Jl(y)~~~~ (~~ D,,Min [c,Jk —b j~ ) ykl~~L(y; 6) as defined in (11)
— ii h i  j

H( i i) 4~~~(E D ui Max (chJft —6 ,k D yki .

Since fl~y) —R(y) clearly is no larger tha n

Max { ~~ D,1[Max {cu,k —b ,L} —Min{c~,k ---b,k})}

=~~~Maxf ED,1 Range (c,,k —b j&fl~~~b as defined in (13)

for any y ~ 0 satisfying (4), we have

(A6) L(y; 6) �R(~, y) �L(y; b)+ee for all (y, z) satisfying (4) and
(6) and ~ satisfying (2.2A) and
(3.1).

-
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The desired conclusion (A5) now follows easily from (A3) * and (A6) . l’liis cump lete~ the proof

of Lemipa 2. —
Finall y we come to the second conclu~ion of the Mu lt i  Theorem. Let. (7 , ~, ~, E) be any

optimal solution to P,.~ and generate ~~~ for u i  according to

D 11 y ~ —
- E~, all ijk with 1€!.

This “any feasible disaggr egation of ~~
“ construction is possible because of the assumption that the

sam e jk links exist for all itt. \Ve i t u t u s t  show that (1— , 7÷ , ~ , 7) is feasible arid ~b—O~ t lWUl in P1.

The verification of feasibility is ~.trai ghtforw ard.  To verif y ~0-optimality we nee(l to show

~~ C j, k t , ,k+~~~C ljk Z uj k + F (y ,  ~ )�V(!’,) +Eb.

This is an obvious consequence of (12) and

v(F , b~ <~~~Cl,kX f,k+F(y, 
~

) � v(P 1. ~
) +Eb.

This last result , in turn , is a simple consequence of these two facts:

E C ljk~~k+E ~~~~~~~~ ~) + L(~ ; b) =v(P ,.~) ,
Ilk jk

S.

which holds by the definition of (~ 
-
, ~~, 

, ~), and

L(~ ; b) �E (c lJk —b ,k)~~k�L(~ ; b)+ i ,,,
ijk
Id

which can be simplified to

L(~ ; b) �E c~~x~~—E b J k’~k�L(~j ; b) + € b.
ijk jk
I,!

This completes the proof of the Main Theorem.
REMARK : It is a straightforward matter to generalize the Main Theorem to cover the

case where several disjoint subsets of items are to be aggregated , say / 1 J11• The analogs of

P, and P,.b shoul d be obvious. Assume for h= 1, . . ., II that the same ,k links ex ist for every

item in subset P and choose b~ arbitraril y for the~e li nks. I)efine

L ” (y ; b ”) 4 E (ED 11 Mm { e ek — 6 _ Sb \ ?/~‘ii \i ,I~ I /
Then

v (analog of I~. i) �l ’ (analog of P,) �r (analog of P,.~~-f~-(’,

where

~iu14~~~~si ax {E ED u , Rangu~ {c ,.~_ 1’ 1}}~

I~~~~.. ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
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and an ~ “~optinmal  solution of th e  analog of I’ , ca ti he cot i s t r u t t ed  in the obvio ii .. W IIV .  Not e  l in t

~~“ is smaller than the tolerance t h a t  would he obtained front Ii ~ I l ( ( ( - .~ i V ( 5  l l J ) J ) l i ( f l t i o t i s  of t he
original version of the M ain ‘l’lleor entI .

APPENDIX 2: NECESSARY ANt) SUFFICIENT CONDITIONS FOR ZERO AGGREGATION
ERROR

PR OPOSITION : t~-~-0 in expression ( 13) if ar i d onl y if there exist number -. -y,~ ~U( }i t h a t

e ,J ~=b~k .f- y ,k for all ijk with it  I and Ic such t h a t  it i~,

(onrlecte(l to some / wit-h I) ,, -0 .

PROOF: It . is ca~.y to see tha t  t~=() if and only if

D 11 Range c ,5 — b,A =0 for all possible i/ cl with i I
(for i/cl to be possible, Ic i t i u s t he
connected to I and ij f r lutist exist

fo r some

which , by t he nonnegativity of l) ,~ and of the range function , li oltis if alibi un iv  if

(A7 )  Range e~~ — ~~ } =0 for all possible i/c with it I and Ic
such that it is connected to some
I with D 11>0 .

Now the range function has the property that it vanishes if and only if all of its arguments lire
identical , and so .‘~7) holds if and onl y if numbers 7I~ exist such that

e ,,k —b,k =y ik for all ijic with it  I and k such that it is
connected to some I with D11> O.

-
. 

~~~~ ... C r~~- -- - ;- . . — 
-

- -- -- - — -

~ 

-
— — .-

~~~~~~
-— - --- - - - - - -—- - - - -. -—~~,—-~~~-, -~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -


